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On the Quasi-Diagonalization
and Uncoupling of Gyroscopic
Circulatory Multi-Degree-of-
Freedom Systems
A new central result that gives the necessary and sufficient conditions for two n by n skew-
symmetric matrices and one symmetric matrix to be simultaneously quasi-diagonalized by a
real orthogonal congruence is proved. Based on this result, the decomposition of linear
multi-degree-of-freedom dynamical systems with gyroscopic, circulatory, and potential
forces is investigated through a real linear coordinate transformation generated by an
orthogonal matrix. Several sets of conditions, applicable to real-life structural and mechan-
ical systems arising in aerospace, civil, and mechanical engineering, under which such a
coordinate transformation exists are found, thereby allowing these systems to be decom-
posed into independent, uncoupled subsystems, each with a maximum of two degrees of
freedom. The conditions are expressed in terms of the coefficient matrices of the system.
A specific form for the circulatory (gyroscopic) matrix is posited, and when the gyroscopic
(circulatory) matrix is simple—a situation that commonly appears in real-life applications
—it is shown that just a single necessary and sufficient condition is required for the decom-
position of the multi-degree-of-freedom system. Numerical examples are provided through-
out to demonstrate the analytical results. [DOI: 10.1115/1.4067148]
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1 Introduction
An important class of linear multi-degree-of-freedom (MDOF)

dynamical systems is associated with potential (conservative), cir-
culatory and gyroscopic forces and can be described by

M̃q̈ + G̃q̇ + Ñq + K̃q = 0 (1)

where M̃, G̃, Ñ and K̃ are n by n constant real matrices; the inertia

matrix M̃ is symmetric and positive definite (M̃ = M̃
T
> 0), G̃ and Ñ

are skew-symmetric (G̃ = −G̃T
, Ñ = −ÑT

) and K̃ is symmetric. The
n-vector of generalized coordinates is denoted by q, and the dots
indicate differentiation with respect to the time t. The terms in G̃,
Ñ and K̃ correspond to gyroscopic, circulatory, and potential
forces, respectively. The matrices Ñ and K̃ can also be thought of
as the skew-symmetric and symmetric additive parts, respectively,
of a given stiffness matrix. Since any arbitrary matrix can be
uniquely expressed as the sum of a skew-symmetric and a sym-
metric parts, (1) also describes a multi-degree-of-freedom system,

whose stiffness matrix is arbitrary (non-conservative), subjected
to a gyroscopic force. Physical systems modeled by (1) are com-
monly found in aerospace, mechanical, and civil engineering.
Equation (1) represents a set of coupled second-order ordinary-

differential equations and can be obtained by the application of
Lagrange’s equations

d

dt

∂L
∂q̇

−
∂L
∂q

+
∂Φ
∂q̇

= 0 (2)

with the Lagrangian

L(q, q̇) =
1
2
q̇T M̃q̇ +

1
2
q̇T G̃q −

1
2
qTK̃q (3)

and the so-called “dissipative” function

Φ(q, q̇) = q̇T Ñq (4)

Consider a change of coordinates from q to p defined by the real
linear transformation

q = Pp ⇔ p = P−1q (5)

where P can be any nonsingular real matrix. Noting (3) and (4), this
transformation of coordinates causes M̃, K̃, Ñ and G̃ to be
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congruently transformed, i.e.,

M̃ � M = PTM̃P, K̃ � K = PTK̃P,

G̃ � G = PTG̃P, Ñ � N = PTÑP
(6)

If Ñ = 0 and G̃ = 0 (pure potential system or conservative non-
gyroscopic system), one can always find the transformation
matrix P so that M = I (the identity matrix) and the new potential
(stiffness) matrix is diagonal, i.e., in new coordinates p, called
normal (principal or modal) coordinates, the system is then decom-
posed into n independent single-degree-of-freedom subsystems.
The procedure for decoupling such systems is well known and is
called modal analysis. When Ñ ≠ 0 and/or G̃ ≠ 0, the system is
not completely decomposable because changes of coordinates (5)
that makesM and K diagonal retains N and/or G as skew-symmetric
matrices. However, sometimes it might be decomposed into several
independent subsystems. Also, it is worth pointing out that the
minimum number of degrees of freedom necessary to incorporate
circulatory and/or gyroscopic forces is two. Therefore, it is
natural to ask whether or not we can decompose system (1) into
independent subsystems, each of which has no more than two
degrees of freedom, by means of a real change of coordinates
(i.e., using a congruence transformation). The intent of this paper
is to show that multi-degree of freedom gyroscopic circulatory
potential systems can be uncoupled when certain conditions are
satisfied.
For a given set of matrices M̃, K̃, G̃, and Ñ in (1), our overall aim

is to find a real nonsingular matrix P, and the necessary and suffi-
cient conditions under which it exists, such that the matrices
M, K, G, and N in (6) are in canonical (simplest) form. The canon-
ical form for M will turn out to be the identity matrix, and for K a
diagonal matrix. The canonical forms for G and N will be quasi-
diagonal, a term that will be explained in the following section.
We will show that when certain necessary and sufficient conditions
are satisfied, the multi-degree-of-freedom (MDOF) system
described by (1) can be decomposed, through the use of a real coor-
dinate transformation, into independent, uncoupled subsystems
each of which has at most two degrees-of-freedom.
Though we have considered the unforced equation of motion (1),

all the results related to decomposition and uncoupling in this paper
also apply directly to systems that are forced, as will become
obvious as we proceed.
In the next section, we formulate an algebraic result, which is

basic to our further considerations. In Sec. 3, we develop the neces-
sary and sufficient conditions for the uncoupling of systems under
consideration based on our results in Sec. 2. In Sec. 4, we consider
a specific but useful form for the circulatory matrix that reduces the
number of conditions required for the uncoupling. Section 5 gives
the conclusions.

2 Central Theorem
It is well known that for an n × n real skew-symmetric matrix G

there exists an n by n real orthogonal matrix Q such that

QTGQ = diag( β1J2, . . . , βn/2J2) for n even (7a)

= diag( β1J2, . . . , β(n−1)/2J2, 0) for n odd (7b)

where J2 is the two-dimensional skew-symmetric matrix

J2 =
0 1
−1 0

[ ]

and some of the real numbers βj may be zero (see, for example [1],
p. 65). Furthermore, J22 = −I2, where I2 is the 2 by 2 identity matrix.
The block-diagonal form of matrix (7), which we shall refer to as

quasi-diagonal, is the simplest possible (canonical) form of a skew-
symmetric matrix with respect to orthogonal similarities, while the
canonical form for a real symmetric matrix is, of course, a diagonal

matrix consisting of its eigenvalues along the diagonal. We also
note that the form (7) is recognized as the real Jordan form for
the matrix G and therefore plays a fundamental algebraic role [2].

LEMMA 1. Let K = KT and G = −GT be n by n real matrices. The
necessary and sufficient conditions that there exists a real orthog-
onal matrix Q such that

QTKQ = Λ = diag(λ1, . . . , λn) (8)

and

QTGQ = Γ = diag( β1J2, . . . , βn/2J2) for n even (9a)

= diag( β1J2, . . . , β(n−1)/2J2, 0) for n odd (9b)

where all the λ,j s and β,j s are real numbers, are

[K, G2] = 0, or KG2 = G2K (10)
and

[K, GKG] = 0, or (KG)2 = (GK)2 (11)

where the commutator of any two square matrices A and B is
defined as [A, B]: = AB − BA.

Proof. The proof of this result can be found in Refs. [3] and [4].▪

Remark 1. If Rank(G) = 2m ≤ n (the rank of a skew-symmetric
matrix must be even), then m of the βj are nonzero. The two-
dimensional blocks appearing along the diagonal of matrix (9)
can then be ordered, with no loss of generality, in such a way that
the first m of them are nonzero, i.e., we can put

Γ = diag( β1J2, . . . , βmJ2, 0n−2m),

where the real numbers βj ≠ 0, j = 1, . . . , m, and 0n−2m is an (n −
2m) by (n − 2m) zero matrix. The nonzero numbers βj correspond
to (complex) conjugate pairs of purely imaginary eigenvalues of
G, namely, ±βji, i =

����
−1

√
, with the zero eigenvalue of G having

a multiplicity of (n − 2m).
We next prove a central theorem that plays a key role in our

further considerations.

THEOREM. Let K = KT
, G = −GTand N = −NT be n by n real

matrices, and let Rank(G) = 2m ≤ n. The necessary and sufficient
conditions for a real orthogonal matrix Q to exist such that

QTKQ = Λ = diag(λ1, . . . , λn) (12)

QTGQ = Γ = diag(β1J2, . . . , βmJ2, 0n−2m) (13)

and

QTNQ = N = diag(ν1J2, . . . , νn/2J2) for n even (14a)

= diag(ν1J2, . . . , ν(n−1)/2J2, 0) for n odd (14b)

where λj, νj, and βj are real numbers with βj ≠ 0, j = 1, . . . , m, are
that the following six commutation conditions be met:

[G, N] = 0 (15)

[K, GN] = 0 (16)

[K, G2] = 0, [K, GKG] = 0 (17)
and

[K, N2] = 0, [K, NKN] = 0 (18)

Note the distinction between N and N in (14): N is a real skew-
symmetric matrix, while N is a quasi-diagonal, skew-symmetric
matrix whose structure is given in (14). This notation will be
used throughout the paper.
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To prove this theorem, we additionally need the following two
lemmas.

LEMMA 2. The product of two skew-symmetric matrices G and N
is symmetric if and only if [G, N] = 0.

Proof. Assume that [G, N] = 0, then GN = NG = (GN)T . The last
equality follows because G and N are both skew-symmetric.
Hence, GN is symmetric. On the other hand, if GN is symmetric
then GN = (GN)T = NG; the last equality again follows because
G and N are skew-symmetric. Hence GN − NG = [G, N] = 0. ▪

LEMMA 3. If conditions (15)–(17) are satisfied, then the sym-
metric matrices

K, GN, G2, GKG (19)

commute pairwise.

Proof. According to Lemma 2, the matrix GN is symmetric; the
other three matrices of the family shown in (19) are symmetric,
since the matrix G is skew-symmetric, and K is symmetric. There
is a total of C4

2 = 6 conditions for pairwise commutation of the
matrices in (19). Three of them appear in (16) and (17); the remain-
ing three are shown to follow from (15)–(17) in the Appendix. ▪

Remark 2. When Λ is diagonal as in (12), and Γ and N are quasi-
diagonal as in (13) and (14), then the matrices ΓN, Γ2, N2, ΓΛΓ
and NΛN are diagonal. They are:

ΓN = NΓ = −diag( β1ν1I2, . . . , βmνmI2, 0n−2m) (20)

Γ2 = −diag( β21I2, . . . , β
2
mI2, 0n−2m), βj ≠ 0, j = 1, . . . , m (21)

N2 = −diag(ν21I2, . . . , ν
2
n/2I2, ) for n even (22a)

= − diag(ν21I2, . . . , ν
2
(n−1)/2I2, 0) for n odd (22b)

ΓΛΓ = −diag( β21λ2, β
2
1λ1, . . . , β

2
mλ2m, β

2
mλ2m−1, 0n−2m) (23)

and

NΛN = −diag(ν21λ2, ν
2
1λ1, . . . , ν

2
n/2λn, ν

2
n/2λn−1) for n even (24a)

= − diag(ν21λ2, ν
2
1λ1, . . . , ν

2
(n−1)/2λ(n−1), ν

2
(n−1)/2λ(n−2), 0) for n odd

(24b)

Proof. Let us prove (20). Since Γ and N are block-diagonal matri-
ces, the product ΓN is obtained by multiplying the corresponding
diagonal blocks of Γ and N. Premultiplying the jth diagonal block
of N (Γ) by the jth diagonal block of Γ (N) we get the jth diagonal
block of the product ΓN (NΓ), i.e., for j = 1, . . . , m

[βjJ2][vjJ2] = βjvjJ
2
2 = vjβjJ

2
2 = [vjJ2][βjJ2] = −βjvjI2

The third equality shows that the jth diagonal block of ΓN is the
same as the jth diagonal block of NΓ, each being −βjvjI2, and there-
fore

ΓN = NΓ = −diag( β1ν1I2, . . . , βmνmI2, 0n−2m)

where some of the products βjvj could be zero because some of the
vj could be zero.
When n is even, Λ can also be considered a block diagonal matrix

with each block being a 2 by 2 diagonal matrix and by multipli-
cation of the corresponding blocks the products shown in
(21)–(24) can be similarly obtained. When n is odd, the last block
of Λ is one-dimensional (scalar) and the multiplication yields the
result shown. ▪

Proof of the Theorem. Necessity. Let the orthogonal matrix Q be
such that QTKQ = Λ, QTGQ = Γ and QTNQ = N with Λ, Γ and
N as in (12), (13) and (14), respectively. Then [G, N] =
Q[Γ, N]QT = 0 because Γ and N commute (see (20)). Also,
we have [K, GN] = Q[Λ, ΓN]QT = 0, [K, G2] = Q[Λ, Γ2]QT = 0,
[K, GKG] = Q[Λ, ΓΛΓ]QT = 0, [K, N2] = Q[Λ, N2]QT = 0 and
[K, NKN] = Q[Λ, NΛN]QT = 0 since, according to Remark 2, all
the matrices ΓN, Γ2, N2, ΓΛΓ and NΛN are diagonal, and therefore
commute with the diagonal matrix Λ, making all their commutators
equal to zero.
Sufficiency. Suppose that conditions (15)–(18) are satisfied.

Then, because of Lemma 3, the symmetric matrices in (19)
commute pairwise and, according to a well-known result (see,
for example, Ref. [2]), they have n common linearly independent
eigenvectors. Let σ(G) = ( ± iβ1, . . . , ± iβm, 0, . . . , 0), βj ≠ 0, j =
1, 2, . . . , m, be the spectrum (denoted by σ(□)) of the skew-
symmetric matrix G. Then σ(G2) = ( − β21, − β21, . . . , − β2m,
−β2m, 0, . . . , 0). With no loss of generality, let q1 be a (real) unit
eigenvector such that

G2q1 = −β21q1, β1 ≠ 0

Kq1 = λ1q1

GKGq1 = μ1q1

and

GNq1 = α1q1

where, λ1, μ1, and α1 are real numbers, which could be zero. Pre-
multiplying each of the last two equations by G gives G2KGq1 =
μ1Gq1 and G2Nq1 = α1Gq1. Since G2K = KG2 (because G2 and K
commute) and G2N = NG2 (because G and N commute), we then
get KGG2q1= μ1Gq1 and NG2q1 = α1Gq1. Furthermore, because
G2q1 = −β21q1, these two relations become

K(Gq1) = −μ1β−21 (Gq1) (25)

and

Nq1 = −α1β−21 Gq1 (26)

Since ‖Gq1‖ =
�����������
qT1G

TGq1
√

=
����������
−qT1G2q1

√
=

��������
β21q

T
1 q1

√
= β1 ≠ 0, it

follows from (25) that the vector q2: = −β−11 Gq1 is a unit eigenvec-
tor of the matrix K corresponding to the eigenvalue λ2: = −μ1β−21 .
Furthermore, because G is skew-symmetric,
qT1q2 = −β−11 qT1Gq1 = 0, i. e., the unit vectors q1 and q2 are
orthogonal. On the other hand, we see from (26) that Nq1 =
−ν1q2 with ν1: = −β−11 α1. Also, Nq2 = −β−11 NGq1 = −β−11 α1q1 =
ν1q1 since G and N commute. Now using q1 and q2 as the
first and second columns we form an orthogonal matrix
Q1 = q1 q2 q3 . . . qn

[ ]
, whose remaining columns can be

chosen arbitrarily provided QT
1Q1 = In.

We see that for k = 1, 2, . . . , n, noting the orthogonality of the
columns of Q1, the elements of the first and second rows
(columns) of the symmetric matrix QT

1KQ1 are given by

qT1Kqk = qTk Kq1 = λ1q
T
k q1 = λ1δ1k and

qT2Kqk = qTk Kq2 = λ2q
T
k q2 = λ2δ2k (27)

where δ jk denotes the Knonecker delta. We note that Gq1 = −β1q2.
Multiplying both sides of this equation by G, we infer that
Gq2 = −β−11 G2q1 = β1q1.
Hence, for k = 1, 2, . . . , n, the elements of the first and second

rows (columns) of the skew-symmetric matrix QT
1GQ1 are then

given, respectively, by the relations

qT1Gqk = −qTk Gq1 = β1q
T
k q2 = β1δ2k and

qT2Gqk = −qTk Gq2 = −β1qTk q1 = −β1δ1k (28)
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Similarly, for k = 1, 2, . . . , n, noting that Nq1 = −ν1q2 and
Nq2 = ν1q1, the first two rows (columns) of the skew-symmetric
matrix QT

1NQ1 are given by

qT1Nqk = −qTk Nq1 = ν1q
T
k q2 = ν1δ2k and

qT2Nqk = −qTk Nq2 = −ν1qTk q1 = −ν1δ1k (29)

From (27)–(29), the structures of the three matrices QT
1KQ1,

QT
1GQ1 and QT

1NQ1 are thus found to be as follows:

and

Since the (n−2)-dimensional matrices Kn−2, Gn−2 and Nn−2 satisfy
the same conditions as K, G and N this procedure continues in
the same manner, and after m steps we conclude that there exists
an orthogonal matrix Q̂ such that

Q̂TGQ̂ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0n−2m

( )

Q̂TKQ̂ = diag(λ1, . . . , λ2m, Kn−2m)

and

Q̂TNQ̂ = diag ν1
0 1
−1 0

[ ]
, . . . , νm

0 1
−1 0

[ ]
, Nn−2m

( )

where 0n−2m is (n − 2m)-dimensional zero matrix, while Kn−2m and
Nn−2m are (n − 2m)-dimensional symmetric and skew-symmetric
matrices, respectively. From (18), the matrices Kn−2m and Nn−2m
satisfy conditions

[Kn−2m, N2
n−2m] = 0 and [Kn−2m, Nn−2mKn−2mNn−2m] = 0

and, according to Lemma 1, there exists a real orthogonal
(n − 2m)-dimensional matrix �Qn−2m that reduces the matrices
Kn−2m and Nn−2m simultaneously to diagonal and quasi-diagonal
forms, respectively, i. e.,

�Q
T
n−2mKn−2m �Qn−2m = diag(λ2m+1, . . . , λn)

and

�Q
T
n−2mNn−2m �Qn−2m = diag(νm+1J2, . . . , νn/2J2) for n even

= diag(νm+1J2, . . . , ν(n−1)/2J2, 0) for n odd

Thus, the orthogonal matrix

Q = Q̂
I2m 0
0 �Qn−2m

[ ]

simultaneously reduces K , G and N to the forms given in
(12)–(14). ▪

When the forms in (12)–(14) are obtained we shall refer to this as
the simultaneous (orthogonal) quasi-diagonalization of the matri-
ces G, N, and K by the (real orthogonal) matrix Q.

Remark 3. It is clear from the proof of the Theorem that the roles of
G and N can be interchanged.

Remark 4. It can be verified by direct computation that the six con-
ditions in (15)–(18) are satisfied when n= 2.

Remark 5. It follows from the proof of the theorem that only the
four conditions given in (15)–(17) are necessary and sufficient for
a real orthogonal matrix Q̂ to exist that simultaneously reduces G,
K and N to the block-diagonal forms

Q̂TGQ̂ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0n−2m

( )
,

Q̂TKQ̂ = diag(λ1, . . . , λ2m, Kn−2m)

and

Q̂TNQ̂ = diag ν1
0 1
−1 0

[ ]
, . . . , νm

0 1
−1 0

[ ]
, Nn−2m

( )

where Kn−2m and Nn−2m are (n − 2m)-dimensional symmetric and
skew-symmetric matrices, respectively. The additional two condi-
tions given in (18) ensure the simultaneous orthogonal diagonaliza-
tion of K(Kn−2m) and quasi-diagonalization of N(Nn−2m). We show
in this Remark that when 2m ≥ n − 2, only the four conditions
(15)–(17) are necessary and sufficient for the simultaneous orthog-
onal quasi-diagonalization of G, N, and K.
We begin by noting that when G has full rank (n = 2m), the three

matrices 0n−2m, Kn−2m, and Nn−2m disappear, and so (15)–(17) give
the necessary and sufficient conditions for the simultaneous orthogo-
nal quasi-diagonalization of G, N, and K. When 2m = n − 2, in the
above block-diagonal forms the submatrices Kn−2m and Nn−2m are
two-dimensional, and consequently, by Remark 4, conditions (18)
are automatically satisfied. In the case when 2m = n − 1 (then n is
odd) these three submatrices are one-dimensional (scalars) and they
therefore always commute. Therefore, when 2m ≥ n − 2, the four
conditions in (15)–(17) are necessary and sufficient for the simulta-
neous orthogonal quasi-diagonalization of the matrices G, N, and K.

A direct consequence of our Theorem is the following assertion.
It is a counterpart of the well-known result related to real symmetric
matrices which states that two such matrices can be simultaneously
diagonalized by a real orthogonal transformation if and only if they
commute in multiplication [1].

COROLLARY 1. Let G = −GT and N = −NT be n by n real matri-
ces, and let Rank(G) = 2m ≤ n. The necessary and sufficient condi-
tion that there exists a real orthogonal matrix Q such that

QTGQ = Γ = diag( β1J2, . . . , βmJ2, 0n−2m) (30)

and

QTNQ = N = diag(ν1J2, . . . , νn/2J2) for n even (31a)

= diag(ν1J2, . . . , ν(n−1)/2J2, 0) for n odd (31b)

is that the skew-symmetric matrices G and N commute in multipli-
cation, i.e., [G, N] = 0.

Proof. Application of the Theorem with K = 0 gives the result. ▪

We next give three lemmas that will be used when we consider
the application of our Theorem in the following Section to real-
world structural and mechanical systems.

LEMMA 4. Let K = KTand G = −GT be n by n real matrices. If
all the nonzero eigenvalues of the skew-symmetric matrix G are dis-
tinct, then the condition

[K, G2] = 0
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implies the condition

[K, GKG] = 0.

Proof. See [4]. ▪

LEMMA 5. Let K = KT
, G = −GTand N = −NT be n by n real

matrices. If all the eigenvalues of the symmetric matrix K are dis-
tinct, then the condition

[K, GN] = 0

implies the condition

[G, N] = 0.

Proof. Since K is symmetric there exists a real orthogonal matrix Q
such that K = QΛQT where Λ = diag(λ1, . . . , λn). Then from
[K, GN] = 0 we get ΛQTGNQ = QTGNQΛ. Upon expansion, this
condition is equivalent to

λrbrs = λsbrs, r, s = 1, . . . , n

where brs is the rs
th element of the matrix QTGNQ. Since all λr are

distinct, the above equations imply that brs = 0 when r ≠ s. That
means that QTGNQ is a diagonal matrix and therefore GN is a sym-
metric matrix. SinceG and N are skew-symmetric matrices and their
product is symmetric, [G, N] = 0 by Lemma 2. ▪

LEMMA 6. Let K = KT
, G = −GT and N = −NT be n by n

real matrices, and let Rank(G) = 2m ≤ n. If all the nonzero
eigenvalues of the skew-symmetric matrix G are distinct, then the
two conditions

[G, N] = 0 and [K, G2] = 0

imply the condition

[K, GN] = 0

Proof. Since G and N commute, according to Corollary 1, there
exists a real orthogonal matrix Q such that

G = Q Γ̂ 0
0 0n−2m

[ ]
QT , Γ̂ = diag( β1J2, . . . , βmJ2)

and N = QNQT where N is as in (31). Also, we can write

K = Q K̂ K̃
K̃

T �K

[ ]
QT

where K̂ and �K are 2m- and (n−2m)-dimensional symmetric matri-
ces, respectively, and K̃ is 2m by (n−2m) matrix. Then, the condi-
tion [K, G2] = 0 yields K̃ = 0 because Γ̂ is nonsingular, and

K̂Γ̂2 = Γ̂2K̂

Next, after partitioning the symmetric matrix K̂, as K̂ = [K̂rs]mr,s=1
with two-dimensional sub-matrices K̂rs, the above condition
becomes

β2r K̂rs = β2s K̂rs, r, s = 1, . . . , m

which yield K̂rs = 0 when r ≠ s because, in view of the assumption,
the set of numbers {β1,…, βm} are distinct. Thus, the matrix K that
satisfies the condition [K, G2] = 0 must be of the form

K = Q diag(K̂rr)mr=1 0
0 �K

[ ]
QT

where K̂rr , r = 1, . . . , m, are two by two symmetric matrices and �K
is an (n−2m)-dimensional symmetric matrix. But from (20), we

know that ΓN = −diag( β1ν1I2, . . . , βmνmI2, 0n−2m) so that

[K, GN]=Q[diag(K̂, �K), ΓN]QT

=−Qdiag([K̂11, β1ν1I2], . . . , [K̂mm, βmνmI2], 0n−2m)Q
T

=−Qdiag(β1ν1[K̂11, I2], . . . , βmνm[K̂mm, I2], 0n−2m)QT = 0

since [K̂rr , I2]= 0, r = 1, . . . , m. ▪

3 Uncoupling of Gyroscopic Circulatory Systems
We begin with the observation that the change of coordinates

q = M̃
−1/2

x, where M̃
−1/2

denotes the inverse of the unique positive
definite square root of M̃, transforms (1) to the simpler form

ẍ + Gẋ + Nx + Kx = 0 (32)

where

G = −GT = M̃
−1/2

G̃M̃
−1/2

(33)

N = −NT = M̃
−1/2

ÑM̃
−1/2

(34)

and

K = KT = M̃
−1/2

K̃M̃
−1/2

(35)

The systems described in (1) and (32) are equivalent and we will
deal mainly with (32) in what follows. We shall refer to the matrices
K, G, and N as the stiffness (potential) matrix, the gyroscopic
matrix, and the circulatory matrix, respectively.
The system described by (1) can be uncoupled into (real) inde-

pendent subsystems of at most two degrees-of-freedom using a
real change of coordinates if and only if it can be uncoupled for
the system described by (32) by a real orthogonal transformation.
On the other hand, observe that in principal coordinates a two
degree-of-freedom system under consideration has the canonical
(simplest) form

p̈ + βJ2 ṗ + νJ2p + Λp = 0 (36)

where p is a two-dimensional real vector of principal coordinates,
Λ = diag(λ1, λ2) and λ1, λ2, ν and β are real numbers.
Suppose now that Rank(G̃) = 2m ≤ n and that a transformation

(5) decomposes the system (1) into independent subsystems, each
of which has no more than two degrees of freedom. In this case,
in view of the above observation, we can assume that the trans-
formed system has the following form

p̈ + Γ ṗ + Np + Λp = 0 (37)

with

Λ = diag(λ1, λ2, . . . , λn) (38)

Γ = diag( β1J2, . . . , βmJ2, 0n−2m) (39)

and

N = diag(ν1J2, . . . , νn/2J2) for n even (40a)

= diag(ν1J2, . . . , ν(n−1)/2J2, 0) for n odd (40b)

where λj, νj and βj are real numbers with βj ≠ 0, j = 1, . . . , m.
We note that (37) describes a set of independent, uncoupled (real)

subsystems of at most two degrees of freedom.

Result 1. Let K = KT , N = −NT , G = −GT and Rank(G) = 2m ≤ n.
The necessary and sufficient conditions for (32) to be transformed to
(37) with Λ, Γ and N as in (38)–(40) using a real orthogonal
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transformation are

[G, N] = 0, [K, GN] = 0 (41)

[K, G2] = 0, [K, GKG] = 0 (42)

and

[K, N2] = 0, [K, NKN] = 0 (43)

Proof. Using an orthogonal transformation x = Qp in (32) and mul-
tiplying from the left by QT gives

p̈ + QTGQ ṗ + QTNQp + QTKQp = 0

The theorem states that an orthogonal matrix Q exists, such that

QTKQ = Λ,QTGQ = Γ,QTNQ = N

where Λ, Γ and N are as in (38)–(40), if and only if conditions
(41)–(43) are satisfied. ▪

Note that the uncoupling conditions (41)–(43) trivially hold (dis-
appear) in the following three cases: G = N = 0, K = G = 0 and
K = N = 0. In the first case, as well known and previously men-
tioned in the Introduction, the system can be transformed to the
completely uncoupled form p̈ + Λp = 0. In the second and third
cases the system can be reduced to the forms p̈ + Np = 0 and
p̈ + Γ ṗ = 0, respectively. If N = 0, Result 1 gives necessary and
sufficient conditions for the quasi-diagonalization of conservative
gyroscopic systems obtained earlier in Ref. [4].

Remark 6. The roles of G and N can be interchanged in
Result 1, as well as in other results of this section. Thus,
when Rank(N) = 2m ≤ n then the conditions in (41)–(43), in
which the symbols G and N are interchanged, are necessary
and sufficient for (32) to be transformed using a real orthogonal
transformation to (37) with

Λ = diag(λ1, λ2, . . . , λn)

Γ = diag( β1J2, . . . , βn/2J2) for n even

= diag( β1J2, . . . , β(n−1)/2J2, 0) for n odd

and

N = diag(ν1J2, . . . , νmJ2, 0n−2m)

where βj and νj are real numbers with νj ≠ 0, j = 1, . . . , m.

Remark 7. Conditions in (41)–(43) are equivalent to the symmetry
of the following set of matrices

GN,KGN,KG2, (KG)2,KN2, (KN)2

as well as to the symmetry of GN and the pairwise commutation of
the matrices

K,GN,G2,N2,GNG,NKN

Remark 8. Consider the case when one of the two
skew-symmetric matrices G or N is nonsingular. For definiteness,
let us say that N is nonsingular. Then from Remarks 5 and 6, the
four conditions

[G, N] = 0, [K, GN] = 0, [K, N2] = 0, [K, NKN] = 0

are necessary and sufficient for system (32) to be transformed by a
real orthogonal change of coordinates to (37) with the matrices

Λ = diag(λ1, λ2, . . . , λn)

Γ = diag( β1J2, . . . , βmJ2), and

N = diag(ν1J2, . . . , νmJ2)

where βj and νj are real numbers with νj ≠ 0, j = 1, . . . , m. System
(32) then uncouples into m = n/2 independent two-degree-
of-freedom subsystems each of which, in general, is a gyroscopic
circulatory system.
On the other hand, if G is nonsingular conditions (41) and (42)

are necessary and sufficient for system (32) to be transformed by
a real orthogonal transformation to (37). The matrices Λ, Γ, and
N have the same structure as above except that now βj and νj are
real numbers with βj ≠ 0, j = 1, . . . , m. This again leads to m =
n/2 independent two-degree-of-freedom subsystems, as before.
When n is odd then the uncoupled system has at least one single

degree of freedom potential subsystem.

Remark 9. The above result regarding uncoupling of the MDOF
system can be directly applied to gyroscopic circulatory systems
that are forced. Namely, the necessary and sufficient conditions
for the equation

ẍ + Gẋ + Nx + Kx = f (t),

where K = KT , N = −NT , G = −GT , Rank(G) = 2m ≤ n and the
external force n-vector f (t) = [ f1(t), f2(t), . . . , fn(t)]T , to be trans-
formed to

p̈ + Γ ṗ + Np + Λp = g(t) = :QTf (t)

with Λ, Γ and N as in (38)–(40) using a real orthogonal transforma-
tion x = Qp are conditions (41)–(43).

Let us illustrate Result 1 and Remark 9 with the following two
examples.

Example 1. Consider a four-degree-of-freedom system subjected to
the external force n-vector f (t), as described above, in which

K =

1 −0.5 0 0

−0.5 1 0 0

0 0 1.25 0.75

0 0 0.75 1.25

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,G =

0 0 2 −2
0 0 −2 2

−2 2 0 0

2 −2 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

N =

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

(44)

To check if the six commutation conditions (41)–(43) are satis-
fied, we use Remark 7. We obtain:

GN =

−2 2 0 0
2 −2 0 0
0 0 −2 2
0 0 2 −2

⎡
⎢⎢⎣

⎤
⎥⎥⎦ = NG, i.e., [G, N] = 0;

KGN =

−3 3 0 0
3 −3 0 0
0 0 −1 1
0 0 1 −1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ = GNK, i.e., [K, GN] = 0;
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KG2 =

−12 12 0 0
12 −12 0 0
0 0 −4 4
0 0 4 −4

⎡
⎢⎢⎣

⎤
⎥⎥⎦ = G2K, i.e., [K, G2] = 0;

(KG)2 =

−6 6 0 0
6 −6 0 0
0 0 −6 6
0 0 6 −6

⎡
⎢⎢⎣

⎤
⎥⎥⎦ = (GK)2, i.e., [K, GKG] = 0;

KN2 =

−1 0.5 0 0

0.5 −1 0 0

0 0 −1.25 −0.75
0 0 −0.75 −1.25

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ = N2K, i.e.,

[K, N2] = 0; and,

(KN)2 =

−0.875 −0.125 0 0

−0.125 −0.875 0 0

0 0 −0.875 −0.125
0 0 −0.125 −0.875

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

= (NK)2, i.e., [K, NKN] = 0

Thus, conditions (41)–(43) of Result 1 are satisfied, and taking
into account that detN ≠ 0, the system in this example can be

transformed by a real orthogonal transformation into two indepen-
dent two-dimensional subsystems. Indeed, one easily verifies that
the orthogonal coordinate transformation x = Qp, where

Q =
1��
2

√
1 0 1 0
−1 0 1 0
0 1 0 1
0 −1 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

decomposes the system into two independent, uncoupled
two-degree-of-freedom subsystems described by

p̈1
p̈2

[ ]
+ 4

0 1
−1 0

[ ]
ṗ1
ṗ2

[ ]
+

0 1
−1 0

[ ]
p1
p2

[ ]
+

1.5p1
0.5p2

[ ]

=
1��
2

√ f1(t) − f2(t)
f3(t) − f4(t)

[ ]

and

p̈3
p̈4

[ ]
+

0 1
−1 0

[ ]
p3
p4

[ ]
+

0.5p3
2p4

[ ]
=

1��
2

√ f1(t) + f2(t)
f3(t) + f4(t)

[ ]
.

Example 2. We consider a nine-degree-of-freedom system that is
subjected to an external force n-vector f (t) and that is described
by the matrices (for brevity, the numbers shown below are correct
to 4 decimal places)

K =

7.1032 −0.1111 −0.1111 −0.3968 −0.5635 −0.5635 −1.0635 −1.3968 −1.8968
−0.1111 1.8889 −0.1111 −0.1111 −0.1111 −0.1111 −0.1111 −0.1111 −0.1111
−0.1111 −0.1111 1.8889 −0.1111 −0.1111 −0.1111 −0.1111 −0.1111 −0.1111
−0.3968 −0.1111 −0.1111 3.6032 −0.3968 −0.3968 −0.3968 −0.3968 −0.3968
−0.5635 −0.1111 −0.1111 −0.3968 4.4365 −0.5635 −0.5635 −0.5635 −0.5635
−0.5635 −0.1111 −0.1111 −0.3968 −0.5635 4.4365 −0.5635 −0.5635 −0.5635
−1.0635 −0.1111 −0.1111 −0.3968 −0.5635 −0.5635 5.9365 −1.0635 −1.0635
−1.3968 −0.1111 −0.1111 −0.3968 −0.5635 −0.5635 −1.0635 6.6032 −1.3968
−1.8968 −0.1111 −0.1111 −0.3968 −0.5635 −0.5635 −1.0635 −1.3968 7.1032

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

0 −0.7071 −0.2887 0.2887 0 0 0 0 0
0.7071 0.0000 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071
0.2887 −0.7071 0 −1.7321 0.2887 0.2887 0.2887 0.2887 0.2887

−0.2887 −0.7071 1.7321 0 −0.2887 −0.2887 −0.2887 −0.2887 −0.2887
0 −0.7071 −0.2887 0.2887 0 0 0 0 0
0 −0.7071 −0.2887 0.2887 0 0 0 0 0
0 −0.7071 −0.2887 0.2887 0 0 0 0 0
0 −0.7071 −0.2887 0.2887 0 0 0 0 0
0 −0.7071 −0.2887 0.2887 0 0 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

N =

0 0 0 0 0.6124 −0.6124 −1.0607 1.0607 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−0.6124 0 0 0 0 2.4495 0 −0.6124 −0.6124
0.6124 0 0 0 −2.4495 0 0.6124 0.6124 0.6124
1.0607 0 0 0 0.6124 −0.6124 0 −2.1213 1.0607
−1.0607 0 0 0 0.6124 −0.6124 2.1213 0 −1.0607

0 0 0 0 0.6124 −0.6124 −1.0607 1.0607 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and a computation shows that conditions (41)–(43) are satisfied. The eigenvalues of K are {1, 2, 2, 4, 5, 5, 7, 8, 9}; they are not distinct,
since there are two eigenvalues with multiplicity 2. Also, the eigenvalues of G are {2i, − 2i, 2i, − 2i, 0, 0, 0, 0, 0}, and the eigenvalues of
N are {3i, − 3i, 3i, − 3i, 0, 0, 0, 0, 0}; the non-zero eigenvalues of both these matrices are therefore not distinct. The rank of bothG and N
is 4.
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The orthogonal matrix

Q =

a9 a8 a7 a6 a5 a4 a3 a2 a1
a9 −8a8 0 0 0 0 0 0 0
a9 a8 −7a7 0 0 0 0 0 0
a9 a8 a7 −6a6 0 0 0 0 0
a9 a8 a7 a6 −5a5 0 0 0 0
a9 a8 a7 a6 a5 −4a4 0 0 0
a9 a8 a7 a6 a5 a4 −3a3 0 0
a9 a8 a7 a6 a5 a4 a3 −2a2 0
a9 a8 a7 a6 a5 a4 a3 a2 −a1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where a9 = 1/3 and aj = 1/
��������
( j + j2)

√
, j = 1, 2, . . . , 8, simulta-

neously quasi-diagonalized K, G, and N, and gives

Λ = diag(1, 2, 2, 4, 5, 5, 7, 8, 9),

Γ = diag(2J2, − 2J2, 0, 0, 0, 0, 0)

and

N = diag(0, 0, 0, 0, 3J2, − 3J2, 0)

so that the forced system with these matrices K, G, and N uncou-
ples into the following four independent two-degree-of-freedom
subsystems, and one independent single-degree-of-freedom subsys-
tem:

p̈1
p̈2

[ ]
+

0 2
−2 0

[ ]
ṗ1
ṗ2

[ ]
+

1 0
0 2

[ ]
p1
p2

[ ]
=

g1(t)
g2(t)

[ ]

p̈3
p̈4

[ ]
+

0 − 2
2 0

[ ]
ṗ3
ṗ4

[ ]
+

2 0
0 4

[ ]
p3
p4

[ ]
=

g3(t)
g4(t)

[ ]

p̈5
p̈6

[ ]
+

5 3
−3 5

[ ]
p5
p6

[ ]
=

g5(t)
g6(t)

[ ]

p̈7
p̈8

[ ]
+

7 −3
3 8

[ ]
p7
p8

[ ]
=

g7(t)
g8(t)

[ ]

and

p̈9 + 9p9 = g9(t)

where

g1(t) g2(t) g3(t) g4(t) g5(t) g6(t)g7(t)g8(t)g9(t)
[ ]T= QTf (t)

with

g1(t) =
1
3

∑9
j=1

fj(t), g2(t) = −
2

��
2

√

3
f2(t) +

��
2

√

12

∑9
j=1,j≠2

fj(t)

g3(t) = −
���
14

√

4
f3(t) +

���
14

√

28

∑9
j=1
j≠2,3

fj(t)

g4(t) = −
���
42

√

7
f4(t) +

���
42

√

42

∑9
j=1
j≠2,3,4

fj(t)

g5(t) = −
���
30

√

6
f5(t) +

���
30

√

30

∑9
j=1
j≠2,3,4,5

f1(t)

g6(t) = −
2

��
5

√

5
f6(t) +

��
5

√

10

∑
j=1,7,8,9

fj(t)

g7(t) = −
��
3

√

2
f7(t) +

��
3

√

6

∑
j=1,8,9

fj(t)

g8(t) = −
��
6

√

3
f8(t) +

��
6

√

6

∑
j=1,9

fj(t), and

g9(t) =

��
2

√

2
(f1(t) − f9(t))

▪

COROLLARY 2. Let K = KT, N = −NT , G = −GT and
Rank(G) = 2m ≤ n. If the matrices K, N and G, commute pairwise,
i.e.,

[K, N] = 0, [K, G] = 0, [G, N] = 0 (45)

then there exists a real linear change of coordinates that transforms
(32) to the form (37) with

Λ = diag(λ1I2, . . . , λmI2, λ2m+1, . . . , λn) (46)

Γ = diag( β1J2, . . . , βmJ2, 0n−2m) (47)

and

N = diag(ν1J2, . . . , νn/2J2) for n even (48a)

= diag(ν1J2, . . . , ν(n−1)/2J2, 0) for n odd (48b)

where λj, νj, and βj are real numbers and βj ≠ 0, j = 1, . . . , m. If
m < [n/2]-the integer of n/2, then for any νm+k ≠ 0,
λ2m+2k−1 = λ2m+2k, k ∈ {1, . . . , [n/2] − m}.

Proof. If the matrices K, N and G commute pairwise, then the con-
ditions in (41)–(43) are satisfied, and, according to Result 1, there
exists a real orthogonal transformation Q which transforms (32)
to the form given in (37)–(40). Moreover, the first two condi-
tions in (45) correspond to the conditions [Λ, N] = 0 and
[Λ, Γ] = 0. The condition [Λ, Γ] = 0 requires λ1 = λ2, λ3 =
λ4, . . . , λ2m−1 = λ2m because βj ≠ 0. If m < [n/2] and νm+k ≠ 0 for
some k ∈ {1, . . . , [n/2] − m}, the condition [Λ, N] = 0 additionally
requires λ2m+2k−1 = λ2m+2k. ▪
We illustrate this result in the example below.

Example 3. Consider an 11 degrees of freedom system that satisfies
the conditions in (45) so that a real orthogonal matrix Q exists that
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simultaneously quasi-diagonalizes K, G, and N, and the matrices
Λ, Γ, and N for the system are given by

Λ = diag(λ1, . . . , λ11),Γ = diag(J2, J2, 07), and

N = diag(0J2, 2J2, 4J2, 0J2, J2, 0)

where 07 is the 7 by 7 zero matrix. The non-zero βj
′s in Γ are

β1 = β2 = 1, and the non-zero vj′s in N are ν2 = 2, v3 = 4, and v5 =
1. Since n = 11, [n/2] = 5. Also, the rank of Γ is 4, so that m = 2,
and we find that m < [n/2]. Then the condition that [Λ, Γ] = 0,
requires that λ1 = λ2 and λ3 = λ4. Next, from N we see that the
values of k for which vm+k ≠ 0 are the set {1,3}. The condition
[Λ, N] = 0, then requires that λ2m+2k−1 = λ2m+2k for k ∈ {1, 3}.
That is, λ5 = λ6, and λ9 = λ10. We note that the commutation condi-
tions impose no restrictions on the remaining λj′s, namely, on λ7,
λ8, and λ11.

Remark 10. The pairwise commutation of K, G, and N given in
conditions (45) in Corollary 2 ensures that the conditions in
(41)–(43) are all satisfied. However, the reverse is not true, i. e.,
(41)–(43) does not imply (45). This is because the set of matrices
{K, G, N} that satisfy (41)–(43) is much “larger” (has higher cardi-
nality) than the set that satisfies (45). As a simple example, when
n = 2, all 2 by 2 matrices K, G, and N satisfy conditions
(41)–(43), while the satisfaction of (45) restricts the matrix K to
being proportional to the identity matrix.

According to Lemmas 4–6, the following Result is a direct con-
sequence. It covers situations commonly found in real-life systems
that are widely encountered in aerospace, civil, and mechanical
engineering.

Result 2. Let K = KT , N = −NT , G = −GT and Rank(G) = 2m.
Then (32) can be reduced to (37) with Λ, Γ and N as in (38)–(40)
using a real orthogonal transformation

(a) When the eigenvalues of the potential matrix K are distinct,
and if and only if

[K, GN] = 0, [K, G2] = 0, [K, GKG] = 0, [K, N2]

= 0, [K, NKN] = 0;
(49)

(b) When the nonzero eigenvalues of the skew-symmetric matrix
G are distinct, and if and only if

[G, N] = 0, [K, G2] = 0, [K, N2] = 0, [K, NKN] = 0; (50)

(c) When the nonzero eigenvalues of G are distinct, the nonzero
eigenvalues of N are distinct, and if and only if

[G, N] = 0, [K, G2] = 0, [K, N2] = 0; (51)

(d) When the nonzero eigenvalues of G are distinct, the nonzero
eigenvalues of N are distinct, the eigenvalues of K are dis-
tinct, and if and only if

[K, GN] = 0, [K, G2] = 0, [K, N2] = 0 B (52)

We notice that when the matrices K, G, and N have certain char-
acteristics related to their eigenvalues, the number of necessary and
sufficient conditions for their simultaneous orthogonal quasi-
diagonalization reduces. Indeed, going back to Example 1, we
find that the nonzero eigenvalues of G are distinct, and hence we
needed to check only for the four conditions (50).
According to Remark 5 under the four conditions (41)–(42),

system (32) with Rank(G) = 2m can be reduced by a real orthogonal
change of coordinates into m independent two-dimensional subsys-
tems and one (n − 2m)-dimensional positional (non-gyroscopic)
system. Moreover, if 2m ≥ n − 2, (41)–(42) imply (43), i. e.,
these conditions are necessary and sufficient for (32) to be orthog-
onally transformed to the form (37)–(40). In particular, this would

be true when G has full rank. Therefore, we have the following
result.

Result 3. Let K = KT , N = −NT , G = −GT and Rank(G)=
2m ≥ n − 2. Then (32) can be reduced to (37) with Λ, Γ and N as
in (38)–(40) using a real orthogonal transformation

(a) If and only if

[G, N] = 0, [K, GN] = 0, [K, G2] = 0, [K, GKG] = 0; (53)

(b) When the eigenvalues of the potential matrix K are distinct,
and if and only if

[K, GN] = 0, [K, G2] = 0, [K, GKG] = 0; (54)

(c) When the nonzero eigenvalues of the skew-symmetric matrix
G are distinct, and if and only if

[G, N] = 0, [K, G2] = 0. B (55)

Since matrices with repeated eigenvalues are non-generic, in
many applications to physical systems in aerospace, civil, and
mechanical engineering, the eigenvalues of G will be distinct.
Hence, when n − 2m ≤ 2, just the two commutation conditions in
(55) would suffice for a real orthogonal matrix Q to exist such
that (32) can be reduced to (37).

Example 4. Consider the four-degree-of-freedom system described
by (32) in which

K =

2.45 −0.4 −0.45 −0.85
−0.4 1.6 −0.4 0

−0.45 −0.4 2.45 0.85

−0.85 0 0.85 2.05

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

G =

0 −5 −2 −4
5 0 −5 −2
2 5 0 −4
4 2 4 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,N =

0 0 2 −1
0 0 0 2

−2 0 0 −1
1 −2 1 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (56)

The spectrum of G is { ± 3
��
2

√
i, ± 6

��
2

√
i} and we can apply

Result 3-c. We obtain

GN = 4

0 2 −1 −2
2 1 2 0
−1 2 0 2
−2 0 2 −1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ = NG, i.e., [G, N] = 0,

and

KG2 = 9

−13.6 −1.6 7.2 9.2
−1.6 −8 −1.6 0
7.2 −1.6 −13.6 −9.2
9.2 0 −9.2 −11.6

⎡
⎢⎢⎣

⎤
⎥⎥⎦=G2K, i.e., [K, G2]= 0.

We see that all conditions of Result 3-c are satisfied and the
system (32), (56) can be transformed by a real orthogonal transfor-
mation into two independent two-dimensional subsystems. Indeed,
the orthogonal coordinate transformation x = Qp, where

Q =
1��
3

√
1 −1/

��
2

√
1 −1/

��
2

√
−1 0 0 −

��
2

√
1 1/

��
2

√
−1 −1/

��
2

√
0 −

��
2

√
−1 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦

transforms the system into the following uncoupled form that has
two independent two-degree-of-freedom subsystems

p̈1
p̈2

[ ]
+3

��
2

√ 0 1
−1 0

[ ]
ṗ1
ṗ2

[ ]
+2

��
2

√ 0 1
−1 0

[ ]
p1
p2

[ ]
+

2.4p1
1.2p2

[ ]
=0
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p̈3
p̈4

[ ]
+6

��
2

√ 0 1
−1 0

[ ]
ṗ3
ṗ4

[ ]
−

��
2

√ 0 1
−1 0

[ ]
p3
p4

[ ]
+

3.75p3
1.2p4

[ ]
=0.

By using (33)–(35), taking into account that the eigenvalues of
the matrices G, N and K are same as of M̃

−1
G̃, M̃

−1
Ñ and M̃

−1
K̃

respectively, the Results for the system described by (32) can be
translated for (1) as follows.

Result 4. Let M̃ = M̃
T
> 0, K̃ = K̃

T
, Ñ = −ÑT

, G̃ = −G̃T
and

Rank(G̃) = 2m. The necessary and sufficient conditions that the
system described by (1) can be transformed by a linear change of
coordinates to the one given in (37)–(40) are that

G̃M̃
−1
Ñ = ÑM̃

−1
G̃, K̃M̃

−1
G̃M̃

−1
Ñ = G̃M̃

−1
ÑM̃

−1
K̃ (57)

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃, (K̃M̃

−1
G̃M̃

−1
)2 = (G̃M̃

−1
K̃M̃

−1
)2

(58)

and

K̃M̃
−1
ÑM̃

−1
Ñ = ÑM̃

−1
ÑM̃

−1
K̃, (K̃M̃

−1
ÑM̃

−1
)2 = (ÑM̃

−1
K̃M̃

−1
)2.

(59)

Result 5. Let M̃ = M̃
T
> 0, K̃ = K̃

T
, Ñ = −ÑT

, G̃ = −G̃T
and

Rank(G̃) = 2m. Then (1) can be reduced to the (37) with Λ, Γ and
N as in (38)–(40) using a real change of coordinates

(a) When the eigenvalues of the matrix M̃
−1
K̃ are distinct, and if

and only if the following five conditions are satisfied

K̃M̃
−1
G̃M̃

−1
Ñ = G̃M̃

−1
ÑM̃

−1
K̃ (60)

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃, (K̃M̃

−1
G̃M̃

−1
)2

= (G̃M̃
−1
K̃M̃

−1
)2, (61)

K̃M̃
−1
ÑM̃

−1
Ñ = ÑM̃

−1
ÑM̃

−1
K̃, (K̃M̃

−1
ÑM̃

−1
)2

= (ÑM̃
−1
K̃M̃

−1
)2 (62)

(b) When the nonzero eigenvalues of the matrix M̃
−1
G̃ are dis-

tinct, and if and only if the following four conditions are sat-
isfied

G̃M̃
−1
Ñ = ÑM̃

−1
G̃, K̃M̃

−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃ (63)

K̃M̃
−1
ÑM̃

−1
Ñ = ÑM̃

−1
ÑM̃

−1
K̃, (K̃M̃

−1
ÑM̃

−1
)2

= (ÑM̃
−1
K̃M̃

−1
)2 (64)

(c) When the nonzero eigenvalues of M̃
−1
G̃ are distinct, the

nonzero eigenvalues of M̃
−1
Ñ are distinct, and if and only

if the following three conditions are satisfied

G̃M̃
−1
Ñ = ÑM̃

−1
G̃, K̃M̃

−1
G̃M̃

−1
G̃

= G̃M̃
−1
G̃M̃

−1
K̃, K̃M̃

−1
ÑM̃

−1
Ñ = ÑM̃

−1
ÑM̃

−1
K̃

(65)

(d) When the nonzero eigenvalues of M̃
−1
G̃ are distinct, the

nonzero eigenvalues of M̃
−1
Ñ are distinct, the eigenvalues

of M̃
−1
K̃ are distinct, and if and only if the following three

conditions are satisfied

K̃M̃
−1
G̃M̃

−1
Ñ = G̃M̃

−1
ÑM̃

−1
K̃ (66)

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃, K̃M̃

−1
ÑM̃

−1
Ñ

= ÑM̃
−1
ÑM̃

−1
K̃. (67)

Result 6. Let M̃ = M̃
T
> 0, K̃ = K̃

T
, Ñ = −ÑT

, G̃ = −G̃T
and

Rank(G̃) = 2m ≥ n − 2. Then (32) can be reduced to (37) with Λ,
Γ and N as in (38)–(40) using a real change of coordinates

(a) If and only if

G̃M̃
−1
Ñ = ÑM̃

−1
G̃, K̃M̃

−1
G̃M̃

−1
Ñ = G̃M̃

−1
ÑM̃

−1
K̃ (68)

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃, (K̃M̃

−1
G̃M̃

−1
)2

= (G̃M̃
−1
K̃M̃

−1
)2; (69)

(b) When the eigenvalues of the matrix M̃
−1
K̃ are distinct, and if

and only if the following three conditions are satisfied

K̃M̃
−1
G̃M̃

−1
Ñ = G̃M̃

−1
ÑM̃

−1
K̃ (70)

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃, (K̃M̃

−1
G̃M̃

−1
)2

= (G̃M̃
−1
K̃M̃

−1
)2, (71)

(c) When the nonzero eigenvalues of the matrix M̃
−1
G̃ are dis-

tinct, and if and only if the following two conditions are sat-
isfied

G̃M̃
−1
Ñ = ÑM̃

−1
G̃, K̃M̃

−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃ (72)

Example 5. Consider the system (1) with

M̃ =

5 0 4

0 4 0

4 0 5

⎡
⎢⎣

⎤
⎥⎦, K̃ =

13 −3 14

−3 10 3

14 3 13

⎡
⎢⎣

⎤
⎥⎦,

Ñ =

0 2 0

−2 0 2

0 −2 0

⎡
⎢⎣

⎤
⎥⎦, G̃ =

0 −4 0

4 0 −4
0 4 0

⎡
⎢⎣

⎤
⎥⎦ (73)

Observing that any three-dimensional nonzero skew-symmetric
matrix has distinct eigenvalues and that in this example
Ñ = −0.5G̃, we see that the uncoupling conditions (72) reduce to
the single condition

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃.

Now we first calculate

M̃
−1

=
1
9

5 0 −4
0 2.25 0
−4 0 5

⎡
⎣

⎤
⎦

and then

K̃M̃
−1
G̃M̃

−1
G̃ = 4

1 6 −1
6 −20 −6
−1 −6 1

⎡
⎢⎣

⎤
⎥⎦ = (K̃M̃

−1
G̃M̃

−1
G̃)T

= G̃M̃
−1
G̃M̃

−1
K̃

and, according to Result 6-c, there exists a change of coordinates
q = Pp that decomposes system (1), (73) into two independent sub-
systems: one with two degrees of freedom and another with a single
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degree of freedom. Indeed, the transformation q = Pp with

P =

3���
22

√ 1���
11

√ 1

3
��
2

√
1���
22

√ −
3

2
���
11

√ 0

−
3���
22

√ −
1���
11

√ 1

3
��
2

√

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

reduces system (1), (73) to the form

p̈1
p̈2

[ ]
+ 2

��
2

√ 0 1
−1 0

[ ]
ṗ1
ṗ2

[ ]
+

��
2

√ 0 −1
1 0

[ ]
p1
p2

[ ]
+

−2p1
3.5p2

[ ]
= 0

p̈3 + 3p3 = 0.

4 Uncoupling of Systems Through Imposition
of Structure on the Skew-Symmetric Matrix N
Consider now a special form of the circulatory matrix N in (32)

given by

N = −NT =
∑n−1
r=0

∑m−1
s=0

arsK
rG2s+1Kr (74)

where ars are real numbers, and Rank(G) = 2m.
The form of this series includes expressions for N like,

N =
∑m−1
s=0

asG
2s+1 (75)

and

N =
∑m−1
s=0

bsK
2s+1G2s+1K2s+1 (76)

as well as simpler sums made up of a few terms, for example

N = a0G + a1KGK + a3KG
3K

Result 7. Let K = KT , N = −NT , G = −GT and Rank(G) = 2m ≤ n.
If and only if

[K, G2] = 0 (77)

and

[K, GKG] = 0 (78)

there exists a real orthogonal coordinate change x = Qp that decom-
poses (32) with the circulatory matrix of the form given in (74) into
m independent, uncoupled two-degree-of-freedom subsystems, and
n−2m independent, uncoupled single-degree-of freedom subsys-
tems given by

p̈ + Γ ṗ + Np + Λp = 0 (79)

where

Λ = diag(λ1, . . . , λn) (80)

Γ = diag( β1J2, . . . , βmJ2, 0n−2m) (81)

and the circulatory matrix

N = diag(ν1J2, . . . , νmJ2, 0n−2m) (82)

with

νj =
∑n−1
r=0

∑m−1
s=0

( − 1)sarsβ
2s+1
j λr2j−1λ

r
2j, j = 1, . . . , m (83)

Proof. Using the orthogonal transformation x = Qp in (32) and
multiplying from the left by QT gives

p̈ + QTGQ ṗ + QTNQp + QTKQp = 0.

It follows from Lemma 1 (see Remark 1) that an orthogonal
matrix Q exists, such that QTKQ = Λ and QTGQ = Γ, where Λ
and Γ are as in (80) and (81) if and only if conditions (77)
and (78) are satisfied. Now, because of (74), it follows that QTNQ =
N has form (82)–(83), since

QTKrG2s+1KrQ = ΛrΓ2s+1Λr

= ( − 1)sdiag(β2s+11 λr1λ
r
2J2, . . . ,

β2s+1m λr2m−1λ
r
2mJ2, 0n−2m).

▪
COROLLARY 3. Let K = KT, N = −NT, G = −GTand Rank(G)=

2m ≤ n. Suppose that all nonzero eigenvalues of the matrix G are
distinct. If and only if

[K, G2] = 0 (84)

there exists an orthogonal coordinate change x = Qp that decom-
poses (32) with the circulatory matrix of the form given in (74)
into m independent, uncoupled two-degree-of-freedom subsystems,
and n−2m independent, uncoupled single-degree-of freedom sub-
systems given by (79)–(83).

Proof. If all nonzero eigenvalues of the matrix G are distinct then,
according to Lemma 4, [K, G2] = 0 implies [K, GKG] = 0, and the
Corollary follows from Result 7. ▪

Although the series form given in (74) for the circulatory matrix
N is quite versatile since the real coefficients ars are arbitrary, it does
not cover all matrices N that allow quasi-diagonalization of the
system described by (32). For example, when K = Λ and G = Γ
as in (80) and (81), respectively, and N = diag(02m, �N) where �N
is a nonzero (n − 2m)-dimensional quasi-diagonal skew-symmetric
matrix, then the matrix N cannot be expressed in the form (74).
Therefore, (74) and the commutation conditions (77) and (78)
suffice for a real orthogonal matrix Q to exist so that the real trans-
formation x = Qp decouples the system described by (32) into inde-
pendent subsystems of at most two degrees of freedom, although
when N has the form (74) these commutation conditions are neces-
sary and sufficient for quasi-diagonalization of the system. We will
show in the following analysis that if the skew-symmetric matrices
G and KGK are simple (i. e., they have distinct eigenvalues)—a
situation that commonly arises in applications—then each matrix
N that allows quasi-diagonalization of the system is expressible in
the form (75) and (76), respectively.
Suppose that all eigenvalues of G are distinct and that there exists

a real orthogonal matrix Q such that QTKQ = Λ, QTGQ = Γ, and
QTNQ = N, where Λ is diagonal,

Γ = diag( β1J2, . . . , βn/2J2) when n is even (85a)

= diag( β1J2, . . . , β(n−1)/2J2, 0) when n is odd, (85b)

and

N = diag(ν1J2, . . . , νn/2J2) when n is even (86a)

= diag(ν1J2, . . . , ν(n−1)/2J2, 0) when n is odd, (86b)

in which the βj
′s are nonzero real numbers and vj′s could be arbi-

trary real numbers. From Corollary 3, the matrices K = QΛQT

and G = QΓQT satisfy (84) (and automatically (78) since all
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eigenvalues of G are distinct). Now consider the equation

N =
∑m−1
s=0

asΓ2s+1 (87)

where m = n/2 and m = (n − 1)/2 for n even and odd, respectively,
and Γ, and N are as in (85) and (86). Upon expansion, taking into
account that J2s+12 = (−1)sJ2, (87) is equivalent to

νi
βi
=
∑m−1
s=0

as( − β2i )
s, i = 1, . . . , m (88)

or, in matrix form

V1a = D1c (89)

with a = [a0, a1, . . . , am−1]T , c = [ν1, ν2, . . . , νm]T , D1 =
diag(1/β1, 1/β2, . . . , 1/βm) and V1 is the Vandermonde matrix of
the scalars −β21, − β22, . . . , − β2m, i. e.,

V1 =

1 −β21 . . . (−β21)
m−1

1 −β22 . . . . (−β22)
m−1

: : : :
1 −β2m . . . (−β2m)

m−1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

whose determinant is given by

detA =
∏

1≤j<k≤m
( β2j − β2k ).

Because βk ≠ βj for k ≠ j, the matrix V1 is nonsingular so (89) has a
unique solution. Thus, if all eigenvalues of the matrix G are distinct
then any skew-symmetric matrix N which allows orthogonal quasi-
diagonalization of system (32) can always be expressed in the form
(75).
The case when all eigenvalues of the skew-symmetric matrix

KGK are distinct can be treated similarly.
The equation

N =
∑m−1
s=0

bsΛ2s+1Γ2s+1Λ2s+1 (90)

where Λ, Γ, and N are same as above, is equivalent to the equation

V2b = D2c (91)

with b = [b0, b1, . . . , bm−1]T , c = [ν1, ν2, . . . , νm]T , D2 = diag
(1/σ1, 1/σ2, . . . , 1/σm), σj = βjλ2j−1λ2j ≠ 0, j = 1, . . . , m, and V2

is the Vandermonde matrix of the numbers −σ21, − σ22, . . . , − σ2m,
which is nonsingular since σk ≠ σj for k ≠ j. Note the fact that all
the numbers σj are nonzero. That they are distinct, follows from
the assumption that the matrix KGK is simple. Therefore the
matrix V2 is nonsingular and equation. (91) has a unique solution.
We therefore conclude that if the eigenvalues of the matrix KGK
are distinct then any skew-symmetric matrix N that allows orthog-
onal quasi-diagonalization of system (32) can always be expressed
in the form (76).
Now we have the following two results.

Result 8. When all the eigenvalues of the skew-symmetric matrixG
are distinct, then the conditions given by (75) and (84) are necessary
and sufficient for quasi-diagonalization of (32) using an orthogonal
coordinate transformation.

Result 9. When all the eigenvalues of the skew-symmetric matrix
KGK are distinct, then the conditions given by (76)–(78) are neces-
sary and sufficient for quasi-diagonalization of (32) using an
orthogonal coordinate transformation.

Let us go back to Example 4. In that example, all the eigenvalues
of the skew-symmetric matrix G are distinct, and so the system can

be quasi-diagonalized by an orthogonal transformation as we have
shown earlier. In addition, from Result 8 the skew-symmetric
matrix N can be expressed in the form (75). More precisely, it is
easy to verify that

N =
17
18

G +
5
324

G3.

Remark 11. The roles of G and N can be interchanged in the above
results starting with (74).

We return to Example 1 to illustrate this Remark. For the matrices
K and N from (44) we have

KNK =
1
8

0 0 7 1
0 0 1 7
−7 −1 0 0
−1 −7 0 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦.

Now it is easy to see that the matrixG from (44) can be expressed as

G = 16N − 16KNK

which is of the form (74) in which the roles of G and N have
been interchanged. Since [K, N2] = 0 and [K, NKN] = 0, as
we have shown earlier, then because of Result 7 in which the
matrices G and N are interchanged, the system of this example
can be orthogonally quasi-diagonalized. On the other hand,
σ(KNK) = {± i, ±0.75i}, i.e., the matrix KNK has all distinct
eigenvalues, and according to Result 9 (with G and N interchanged)
the matrix G can be expressed in the form

G = b1KNK + b2K
3N3K3.

We find that b1 = b2 = 256/21.
The sums (74)–(76) can be expressed in terms of the matrices M̃,

K̃, G̃ and Ñ of the original dynamical system (1) using (33)–(35),
and all the above statements obtained for the system described by
(32) can be translated for (1). For example, (75) becomes

Ñ =
∑m
j=1

aj(G̃M̃
−1
)
2(j−1)

G̃ (92)

and the following result can be formulated.

Result 10. When the matrix M̃
−1
G̃ has all distinct eigenvalues, then

the condition

K̃M̃
−1
G̃M̃

−1
G̃ = G̃M̃

−1
G̃M̃

−1
K̃ (93)

together with (92), is necessary and sufficient for quasi-
diagonalization of (1) using a real change of coordinates.

Example 6. Consider a three-degree-of-freedom system (1) with
nonzero matrix G̃. Since the matrix M̃

−1
G̃ has distinct eigenvalues

and m = 1, it follows, according to Result 10, that the system can be
quasi-diagonalized by a real change of coordinates if and only if
Ñ = a1G̃, where a1 is a real number, and condition (93) is satisfied.

5 Conclusions
This paper develops a new central result in linear algebra that

identifies the necessary and sufficient (n&s) conditions for the
simultaneous quasi-diagonalization of two skew-symmetric matri-
ces and a symmetric matrix using an orthogonal congruence. This
result is used to quasi-diagonalize a linear gyroscopic nonconserva-
tive n-degree-of-freedom (MDOF) system described by a mass
matrix that is normalized to the identity matrix I, a gyroscopic skew-
symmetric matrix (G), a circulatory skew-symmetric matrix (N), a
potential symmetric matrix (K), with G multiplying the velocities
to give the gyroscopic force. Since any arbitrary stiffness matrix,
S, can be split into its additive symmetric and skew-symmetric
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parts as S = K + N, the paper addresses the uncoupling of gyro-
scopic systems with arbitrary (nonconservative) stiffness matrices.
Both forced and free vibrations of the MDOF system are
considered.
It is shown that a total of six n&s commutation conditions

between the three n by n matrices K, G, and N are needed for
their simultaneous orthogonal quasi-diagonalization. This simulta-
neous orthogonal quasi-diagonalization, which is achieved by a real
coordinate transformation through the use of a real orthogonal
matrix, yields a set of uncoupled, independent subsystems in
which each subsystem has no more than two degrees of freedom.
These n&s commutation conditions, of course, place restrictions
on the three matrices. When K has distinct eigenvalues, the
number of n&s commutation conditions reduce to 5; when the
non-zero eigenvalues of G(N) are distinct, they reduce to 4; and,
when the non-zero eigenvalues of both G and N are each distinct,
they reduce to 3. Recalling that it is generic to have distinct eigen-
values, many of these conditions are often met in real-life structural
and mechanical systems found in aerospace, civil, and mechanical
engineering. Because the behavior of a two-degree-of-freedom sub-
system is much simpler to understand than that of an MDOF system
with numerous degrees of freedom, the decomposition of an MDOF
system into such subsystems is useful in providing a better under-
standing of the MDOF system’s behavior as well as in providing
more accurate computational methods in the determination of its
response to external forces.
Furthermore, when the rank, 2m, of the skew-symmetric matrix

G(N) is such that n − 2m ≤ 2, where n is the number of degrees of
freedom of the MDOF system, then the number of n&s conditions,
for uncoupling the MDOF system into a set of independent subsys-
tems, each with at most two degrees-of-freedom by an orthogonal
coordinate change, reduces to four. This reduces to three n&s con-
ditions when the eigenvalues of K are distinct, and then further
down to just two n&s conditions when the non-zero eigenvalues
of G(N) are distinct.
In an effort to reduce the number of n&s conditions for simulta-

neous orthogonal quasi-diagonalization, we posit a specific form
for the matrix N(G) and show that the number of n&s commutation
conditions required reduces to just two. When N(G) has this posited
form and the nonzero-eigenvalues of G(N) are distinct a single n&s
condition permits the MDOF system to be decomposed into a set of
at most two degree-of-freedom independent subsystems. It is
shown that when all the eigenvalues either of the gyroscopic
matrix G(N) or of the matrix KGK(KNK) are distinct—a situation,
as mentioned before, that often occurs in real-life—, all gyroscopic
nonconservative multi-degree-of-freedom systems that can be
orthogonally quasi-diagonalized to yield uncoupled subsystems
of dimension two or less must have this posited form for their cir-
culatory matrix N(G).
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Appendix
LEMMA 3. The four commutation conditions given in (15)–(17),

which are

[G, N] = 0, [K, GN] = 0, [K, G2] = 0, [K, GKG] = 0 (A1)

guarantee the remainder of the three pairwise commutation condi-
tions among the matrices

K, GN,G2, and GKG

given in (19).

Proof. We begin by noting that for any three n by n matrices, A, B,
and C, the following properties are true:

(a) [A, B] = −[B, A], and [A, B] = 0 implies that [B, A] = 0,
(b) [AB,C]= [A,C]B+A[B,C] and [A, BC]= [A, B]C+B[A,C]
(c) [A2, A] = 0

Using (1) and properties (a)–(c), we next obtain:

[GN, G] = G[N, G] + [G, G]N = −G[G, N] + [G, G] = 0 (A2)

[GN, KG] = [GN, K]G + K[GN, G] = −[K, GN]G
+ K[GN, G] = 0

(A3)

We note that (A2) requires that only the first commutation condi-
tion in (A1) be satisfied and (A3) requires that only the first two
commutation conditions in (A1) be satisfied.

We now show the following three remaining commutators equal
to zero when (A1) is true. We will be using property (b) often.

(i) [GN, G2] = [GN, G]G + G[GN, G] = 0

In the last equality, we have used (A2).

(ii) [GN, GKG] = [GN, G]KG + G[GN, KG] = 0
To get the last equality we use (A2) and (A3).

(iii) [G2, GKG] = [G2, G]KG + G[G2, KG]

= G[G2, KG] = G[G2, K]G + GK[G2, G]

= G[G2, K]G = −G[K, G2]G = 0.

We have used property (c) to get the second and fourth equalities.
We observe that (i) follows from the first commutation condition

in (A1), (ii) follows from the first two commutation conditions, and
(iii) follows from the third commutation condition in (A1). ▪
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